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Abstract— In this paper our aim is to show the viability
of associating the complex dynamic of a hyperchaotic mas-
ter/slave system to a new quasi-synchronized dynamic achieved
under a multiplicative transformation over the linear part of
the system via the use of a linear controller. The proposed
methodology employs simultaneous triangularization in order
to ensure certain structure aspects of the system are preserved.

To illustrate the results we present several examples of
well known modified hyperchaotic systems.
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I. INTRODUCTION

The problem of stability and synchronization preservation
has been recently addressed for the case of hyperbolic,
nonlinear systems with chaotic dynamics in (Fernández-
Anaya et al., 2007) and (Becker-Bessudo et al., 2008).
Results reported in these articles deal with strictly linear
modifications intended to preserve the hyperbolicity and
stability of the system. Based on these results the goal has
been to develop further studies in the field of stability and
synchronization for modified dynamical systems. One of
the advances we have looked into has been the use of non-
positive definite matrices to induce modifications in a hyper-
bolic dynamical system. The pursuit of this line of thought
has involved the use of higher dimensional, hyperchaotic
systems which may still exhibit some sort of hyperchaotic
or chaotic behavior once the system’s hyperbolicity has
been nullified, thus allowing us to investigate the effects
such modifications have on the system’s dynamic as well
as linear controllers used to synchronize a master/slave
configuration.

Another property we are interested in observing is the
preservation of hyperchaotic behavior in modified systems.
This was achieved through the use of Wolf’s method
(Wolf et al., 1985) for numerical calculation of a system’s
Lyapunov exponents. Comparisons between the number of
positive and negative Lyapunov exponents before and after

the modification will give us a good indication of the
system’s hyperchaotic behavior.

The intent of this paper is to show some preliminary re-
sults derived from ongoing research following these criteria.

II. MATHEMATICAL PRELIMINARIES

In this section we present the necessary definitions
that will allow us to prove the main propositions of this
paper. The results stem from the use of matrix products
of simultaneously triangularizable square matrices and are
focused on the task of preserving the complex dynamic of
a n-dimensional dynamical system.

Definition 1: Hyperbolic Non-Hyperbolic Associated
Dynamics: By this term we understand the following:
given an original hyperbolic dynamic present in a distinct
system we can induce another particular Non-Hyperbolic
dynamic which we can ascribe to a specific modification.
For the case of this article we are associating the state
and error dynamics of a hyperbolic system to those of a
non-hyperbolic one induced via a multiplicative matrix M .

Simultaneous triangularization for square matrices is
defined as follows

Definition 2: [See (Lancaster and Tismenetsky, 1985)]
The group of matrices A1, A2, . . . , An is said to
be simultaneously triangularizable if there exists a
unitary matrix U , where UU> = U>U = I , such that
A1 = UT1U

>, A2 = UT2U
>, . . . , An = UTnU>, where

Ti, for i = 1 , 2 , . . . , n, are upper triangular matrices and
U> is the conjugate transpose of matrix U .

For the following discussion consider ẋ = f(x) to be a
hyperbolic dynamical system, where x ∈ Rn and f : Rn →
Rn is a continuous differentiable function of its argument
and ∆psd as the set of block upper triangular real positive
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semi-definite matrices. Let A = ∂f
∂x

∣∣∣
x0

be the Jacobian
matrix associated with f evaluated at an equilibrium point
x0.

III. SYNCHRONIZATION THROUGH THE USE OF LINEAR
CONTROLLERS

Consider the following n-dimentional systems in a
master-slave configuration, where the master and slave
systems are given by

ẋm = Axm + g(xm) (1)
ẋs = Axs + g(xs) + u(t) (2)

where A ∈ Rn×n is a constant matrix xm and xs are the
state vectors of the master and slave systems, respectively.
g : Rn → Rn is a continuous differentiable, nonlinear
function and u ∈ Rn is the control input.

The problem of synchronization considered in this section
is the complete-state exact synchronization. That is, the
master system and the slave system are synchronized by
designing an appropriate nonlinear state feedback control
u(t) which is attached to the slave system such that

lim
t→∞

‖xs(t)− xm(t)‖ → 0

where ‖·‖ is the Euclidean norm of a vector.
Considering the error state vector e = xs − xm ∈

Rn, g(xs) − g(xm) = L(xm,xs) and an error dynamics
equation

ė = Ae + L(xm,xs) + u(t)

Based in the active control approach (Bai and Lonngren,
2000), to eliminate the nonlinear part of the error dynamics,
and choosing u(t) = Bv(t) − L(xm,xs), where B is a
constant gain matrix which is selected such that (A, B) be
controllable (in our case B = I), we obtain

ė = Ae + v(t).

Notice that the original synchronization problem is equiv-
alent to the problem of stabilizing the zero-input solution
of the last system by a suitable choice of the state feedback
control.

The state-feedback law is given by v = −Ke.
For the needs of this particular article we shall ask

that our suitable feedback matrix K be simultaneously
triangularizable to A. This state-feedback law renders the
error equation to

ė = (A−K)e = U(TA − TK)U>e

with (A−K) a Hurwitz matrix.

A. Simulations of Synchronized Systems
The hyperchaotic Lü system (Chen et al., 2006) is given

by the following set of coupled differential equations

ẋ1 = −36x1 + 36x2 + x4

ẋ2 = 20x2 − x1x3

ẋ3 = −3x3 + x1x2

ẋ4 = 1.3x4 + x1x3

Given that the origin is an equilibrium point for this
system we obtain the following Jacobian and feedback
matrices

A =


−36 36 0 1

0 20 0 0

0 0 −3 0

0 0 0 1.3

 ,

K =


0.0139 0.0089 0 0.0004

0.0089 40.04 0 0.0010

0 0 0.1623 0

0.0004 0.001 0 2.940
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Figure 1. Phase portraits of the synchronized master(—)/slave(· · · )
hyperchaotic Lü system in the x4 − x2 (top-left), x1 − x3 (top-right),
x4 − x3 (bottom-left), x2 − x3 (bottom-right) planes.

The hyperchaotic Rössler system (Arefi and Jahed-
Motlagh, 2009) is given by the following set of coupled
differential equations

ẋ1 = −x2 + x4

ẋ2 = x1 − 0.25x2 + x3

ẋ3 = −0.05x3 − 0.5x4

ẋ4 =
2√
13

x1 +
3
√

13
2

x4 + x1x4

Given that the origin is an equilibrium point for this
system we obtain the following Jacobian and feedback
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Figure 2. Magnitude of error |e| = |xs−xm| between modified master
and slave hyperchaotic Lü systems.

matrices

A =


0 −1 0 −1

1 1/4 1 0

0 0 1/20 −1/2

2/
√

13 0 0 −3
√

13/2

 ,

K =


0.9437 0.0534 0.1720 −0.1465

0.0534 1.123 0.4367 −0.0101

0.1720 0.4367 1.331 −0.1200

−0.1465 −0.0101 −0.1200 0.1258
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Figure 3. Phase portraits of the synchronized master(—)/slave(· · · )
hyperchaotic Rössler system in the x4−x2 (top-left), x1−x3 (top-right),
x4 − x3 (bottom-left), x2 − x3 (bottom-right) planes.
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Figure 4. Magnitude of error |e| = |xs−xm| between modified master
and slave hyperchaotic Rössler systems.

From Figures 1, 2, 3 and 4 we can appreciate the dynam-
ics of both systems and how the applied linear controller
synchronizes both master/slave pairs as we confirm the
errors’ asymptotical trend towards zero.

IV. QUASI-SYNCHRONIZATION IN MODIFIED SYSTEMS

In this section we will introduce a methodology through
which we will induce a modification over the linear part
of the nonlinear dynamical system and the error system
employing matrices defined within the class ∆psd by
means of matrix multiplication.

Definition 3: Constant-Error-Quasi-Synchronization
(CEQS) will be understood as the phenomenon where
the state errors of the dynamical system remain constant
throughout its evolution.

Explicitly this modification will be performed as follows.

Consider a matrix TM ∈ ∆psd and A to be a square
matrix, both having the same dimensions. We can decom-
pose A into it’s upper triangular form by means of a unitary
matrix U , resulting in A = UTAU>. Next we will define
a new matrix M = UTMU>, thus resulting in A and M
being simultaneously triangularizable matrices as expressed
in definition 2.

After multiplying the linear part of our master/slave sys-
tem described by (1) and (2) by our constructed modifying
M matrix the new system will be defined as follows

ẋm = MAxm + g(xm) (3)
ẋs = M(A−K)xs + g(xs)− L(xm,xs) (4)

by our definition of simultaneously triangularizable matrices
and the definition of L(xm,xs) we can rewrite equations
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(3) and (4) as

ẋm = UTMTAU>xm + g(xm) (5)
ẋs = UTM (TA − TK) U>xs + g(xm) (6)

Having done this our new error dynamics equation be-
comes

ė = M(A−K)e = UTM (TA − TK)U>e

According to the definition of the set ∆psd we have
now transformed our original hyperbolic system into a non-
hyperbolic system by changing a certain number of its
eigenvalues to exactly 0 by means of the matrix multiplica-
tion. This in turn has altered our error dyamics equation
now rendering M(A − K) no longer a Hurwitz matrix
and thus we can cannot ensure asymptotical stability of
the error dynamics. The aim is to see what effect does the
transformation have on the original controller and what this
does to the errors of the system.

A. Simulations of Associated Quasi-Synchronized Systems

For the Lü system we have defined our modifying matrix
M as follows

M =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0


rendering our modified Jacobian and feedback matrices as

MA =


−36 36 0 1

0 20 0 0

0 0 −3 0

0 0 0 0

 ,

MK =


0.0139 0 0 0

0 40.04 0 0

0 0 2.940 0

0 0 0 0


In Figure 5 we can appreciate the different sets of trajec-

tories for the modified Lü system, however it is clear that
there is no clear evidence of complete state synchronization.
However, looking at Figure 6 we see that in fact there are
two states which do achieve complete synchronization and
two which remain at a constant distance from each other,
resulting in CEQS by Definition 3.
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Figure 5. Phase portraits of the modified, quasi-synchronized
master(—)/slave(· · · ) Lü system in the x4 − x2 (top-left), x1 − x3 (top-
right), x4 − x3 (bottom-left), x2 − x3 (bottom-right) planes.
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Figure 6. Magnitude of error |e| = |xs − xm| between the modified
master and slave Lü systems.

For the Rössler system we have defined our modifying
matrix M as follows

M =


1.127 −0.0182 2.233 −0.232

−0.0287 1.046 0.1803 −0.0094

0.0553 −0.0835 0.7371 0.0105

0.6776 −0.3187 8.288 0.0897



rendering our modified Jacobian and feedback matrices as
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MA =


−0.1469 −1.132 0.0934 −0.9888

1.041 0.2902 1.055 −0.0105

−0.0777 −0.0761 −0.0466 −0.4808

−0.2689 −0.7573 0.0957 −5.307

 ,

MK =


0.9463 −0.0194 3.846 −0.5127

−0.1173 0.9226 0.3611 0.0280

0.0506 −0.0408 1.253 −0.1193

0.5626 0.0755 14.12 −1.322
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Figure 7. Phase portraits of the modified, desynchronized
master(—)/slave(· · · ) Rössler system in the x4 − x2 (top-left), x1 − x3

(top-right), x4 − x3 (bottom-left), x2 − x3 (bottom-right) planes.
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Figure 8. Magnitude of error |e| = |xs − xm| between the modified
master and slave Rössler systems.

In Figure 7 we can appreciate the different sets of
trajectories for the modified Rössler system, however
it is clear that there is no evidence of complete state
synchronization for any of the master/slave trajectories.
Looking at Figure 8 we see that all four states remain at a
constant distance from each other after the modified control
has been activated, resulting in CEQS across all the states
in the system by Definition 3. The modification method
described here gives rise to the association between the
original and modified complex dynamic through the use of
the multiplicative matrix M .

V. LYAPUNOV EXPONENTS

As a way to determine the change in dynamic of the
modified system with reference to the original dynamic
from which it was constructed we have determined the
Lyapunov exponents, using Wolf’s method, of both sets of
systems shown in Table I

TABLE I
LYAPUNOV EXPONENTS

λ1 λ2 λ3 λ4

Lü 0.9795 0.3181 0 -18.9562
Modified Lü 0.6862 0.0927 0 -19.7081
Rössler 0.1067 0.023 0 -20.8695
Modified Rössler 0.0617 0 -0.1291 -2.7271

From these results we can determine that while for the
both Lü systems and the original Rössler system hyperchaos
is very likely present for both systems; seeing as they both
have two positive Lyapunov exponents, for the modified
Rössler system we have a single positive exponent leading
us to believe the system is most likely simply chaotic.

VI. NOTES ON CONTROL DESIGN

As we established in the introduction of this paper, our
goal was to identify the association between the dynamic
of a certain system and that exhibited after a specific
modification is carried out over that system.

As the simulations in Figures 6 and 8 show we do not pre-
serve synchronization under these modifications. However,
it is possible to synchronize the modified systems using
the same LQR control design (albeit using the modified
system’s new structure) as we used for the original system.

Looking at Figures 9, 10, 11 and 12 we see the effect that
the new control has over the error dynamics of the modified
systems

VII. CONCLUSIONS

The concept of association studied in this article is
based on the relationship between the proposed modifica-
tion methodology and the resulting complex dynamic as
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Figure 9. Magnitude of error |e| = |xs − xm| between the modified
master and slave Rössler systems using the redesigned controller (activated
at t > 40).
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Figure 10. Evolution of each state of the master(—)/slave(· · · ) pair
Rössler systems using the redesigned controller (activated at t > 40).

a consequence of the loss of hyperbolicity. Based on the
results found in our research there is evidence to support our
claim of the possibility of preserving chaotic/hyperchaotic
behavior despite significant changes in the equations that
govern a system’s dynamic. Despite the results showing that
complete state synchronization is not successfully preserved
under the modification, we do find different types of quasi-
synchronization phenomena as defined in section IV. As
seen in section VI if the control is redesigned using the
modified system’s Jacobian matrix successful synchroniza-
tion is still achievable. However seeing that this implies the
use of a control scheme designed after the modification we
cannot speak of these controllers as preserving the original
synchronization under the transformation.

0 5 10 15 20 25 30 35 40 45
10

−20

10
−15

10
−10

10
−5

10
0

10
5

t

ab
s(

x s−
x m

)

 

 
abs(x

s1
−x

m1
)

abs(x
s2

−x
m2

)

abs(x
s3

−x
m3

)

abs(x
s4

−x
m4

)

Figure 11. Magnitude of error |e| = |xs − xm| between the modified
master and slave Lü systems using the redesigned controller (activated at
t > 5).
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Figure 12. Evolution of each state of the master(—)/slave(· · · ) pair Lü
systems using the redesigned controller (activated at t > 5).
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